值得信赖的区块链资讯!
解析FHEML:全同态加密在机器学习中的应用
全同态加密(FHE)是一种加密技术,允许在加密数据上进行有意义的计算,保护数据隐私。它在机器学习领域的应用促进了保护隐私的计算能力,如私密训练和预测。FHEML是一种基于FHE的机器学习方法,允许在加密数据上进行计算。已有一些流行的框架和库用于构建FHEML程序,如Concrete-ml和Tenseal。FHEML的用例包括外包计算、加密推断和加密训练洞察,允许组织在保护隐私的同时利用数据来提升运营效率和优化决策过程。
原文标题:WTF is FHEML
原文作者:Nitanshu Lokhande
原文来源:medium
编译:火星财经,MK
全同态加密(FHE)代表一种加密技术,使得在加密数据上执行有意义的计算成为可能。这意味着,当这些计算的结果被解密时,它们与在明文数据上执行相同计算所获得的结果一致。
In short

fenc 是一种同态加密函数
Where

其同态性在加密空间中保持计算不变。
在 FHE 的广泛类别中,我们通常将 FHE 方案分为以下三种:
-
部分同态加密(SHE):支持有限数量的密文加法和乘法操作。
-
全同态加密(FHE):支持在密文上进行任意数量的乘法和/或加法操作,解密时保持数据完整性。
-
选择性同态加密(Partial HE):仅支持密文上的加法或乘法操作,但不同时支持两者。
早期在机器学习(ML)中探索 FHE
全同态加密(FHE)在机器学习(ML)领域的应用促进了保护隐私的计算能力,使在加密数据上执行计算成为可能。
在这一领域,有几个显著的贡献,例如 Lauter(2021)探讨了如何将同态加密与 AI 集成以进行私密训练和预测,强调了密码学与机器学习的结合,以在利用 AI 力量的同时保护数据隐私。
此外,有关使用 FHE 的隐私保护深度神经网络的工作,详细介绍了一项研究,它探索了使用 FHE 和多方计算(MPC)对 ML 模型中的非算术函数进行混合模型评估,推动了在计算过程中保持数据和模型保密性的边界。
Graepel, Lauter 和 Naehrig(2012)的开创性论文《ML Confidential》介绍了如何将部分同态加密应用于安全地委托 ML 计算给计算服务的方法,确保机密 ML 算法的数据保密性。此外,关于在加密数据上进行逻辑回归和无监督学习算法的研究,展示了将传统 ML 方法调整以在加密约束下操作的实际应用和可能性,证明了这些方法在保护数据隐私方面的可行性和效率。这些工作共同强调了机器学习与密码学的关键交汇点,为未来安全、保护隐私的 ML 算法研究提供了蓝图。
介绍 FHEML
基于全同态加密的机器学习(FHEML)是一种利用全同态加密方案实现机器学习算法的方法。它确保正在处理的数据保持保密,允许在加密数据上进行计算。
FHEML 可以看作是零知识机器学习(ZKML)的补充,ZKML 专注于证明机器学习算法的正确执行,而 FHEML 强调在加密数据上执行计算以维护数据隐私。
FHEML 的核心在于它允许在加密数据上进行计算,使得计算结果一旦解密,就与在原始明文数据上执行计算所得到的结果相匹配。这种能力为机器学习应用开辟了重要的新范畴,因为它允许算法在不损害数据隐私或安全的情况下在加密数据上运行。
它可以可视化为:

FHEML包括被调整以与全同态加密方案协同工作的机器学习算法。通过利用这些方案,FHEML 为一系列以隐私为中心的机器学习用例开辟了新的可能性。从更高层次来看,这包括保密计算、加密训练和私密推断等。这些进展不仅增强了数据的安全性,也扩展了机器学习在处理敏感和隐私要求高的场景中的潜在应用。
关于 FHEML 的现有库和框架
目前,尽管没有统一的标准用于编写 FHEML 程序,但存在一些流行的框架和库,用于构建 FHEML 程序:
Concrete-ml 是由 Zama 创建的库,建立在他们的低级 TFHE(全同态加密)编译器 Concrete 之上。它允许将任意 Python 代码编译成 FHE 电路,使开发者能够编写可以在加密数据上执行计算的 Python 函数。
Concrete-ml 让开发者可以使用熟悉的机器学习 API(如线性模型、基于树的模型、神经网络),这些在 scikit-learn 或其他框架中可用,允许将 PyTorch 模型转换为其 FHE 兼容版本。基于随机梯度下降的分类器可用于加密数据上的训练。Concrete-ml 显著降低了实现加密数据上机器学习操作的难度。
Tenseal,由 OpenMined 社区开发,专注于在张量上启用同态操作(张量是神经网络中处理和表示数据的基本单元)。建立在 Microsoft SEAL(简单加密算术库)之上,Tenseal 提供了一个高效的、可通过 Python 访问的 API,其底层操作使用 C++ 实现,以提升在加密张量上实现同态加密操作的性能。
PySyft 是 OpenMined 的另一个贡献,旨在 Python 中实现安全和私有的深度学习。它结合了 Tenseal 的同态加密能力,增强了其保护隐私的功能。PySyft 引入了基于 CKKS 同态加密方案的 CKKS 张量,允许对实数进行操作并提供近似结果。这不仅涵盖同态加密,还包括安全多方计算和差分隐私,为保护隐私的机器学习提供了全面的解决方案。
TF Encrypted 是专为 TensorFlow 生态系统内的加密机器学习设计的框架。它模仿 TensorFlow 的体验,特别是通过 Keras API,促进了在加密数据上的训练和预测。TF Encrypted 利用安全多方计算和同态加密技术,提供保护隐私的机器学习能力。TF Encrypted 旨在使加密机器学习易于那些不熟悉密码学、分布式系统或高性能计算的人员使用,以推动加密机器学习的普及。
FHEML 的几个通用用例
外包计算
因为计算是在加密的数据上进行的,所以现在各方可以安全地将数据以加密形式共享给第三方来处理。
加密推断
这一过程促进了加密推断,其中用户请求的推断不会泄露给模型,并且默认情况下保持加密状态,仅用户可以使用他们的密钥进行解密。
加密训练洞察
此功能使企业能够使用敏感数据的加密形式来训练机器学习模型并获得洞察力。这允许组织利用其数据来增强运营效率,开发新策略,并优化决策过程,同时确保涉及数据的最高级别的隐私和安全保护。
比推快讯
更多 >>- 数据:ETH 当前全网 8 小时平均资金费率为 0.0022%
- 比特币活跃地址数降至一年来最低水平,引发对区块空间需求的新担忧
- 美国参议院将加密货币市场结构法案推迟到明年审议
- 某新钱包从 Kraken 提取 3301 枚 ETH,并以此购入 51373 枚 AAVE
- 特朗普称将考虑赦免比特币应用 Samourai 开发者 Keonne Rodriguez
- Vast 正洽谈 3 亿美元融资
- 美联储威廉姆斯:支持上周降息 25 个基点,但下次行动尚难判断
- 特朗普:现在比以往任何时候都更接近达成和平协议
- MetaMask 新增对比特币的原生支持,继续推进多链化进程
- 英国最高法院驳回 130 亿美元 BSV 案件上诉
- 路透社:纳斯达克将正式申请5X23小时交易
- 美股收盘三大股指收跌,特斯拉涨 3.5%
- 美SEC主席:政府利用加密货币进行大规模监控的能力必须被限制
- 数据:21.67 万枚 SOL 从 Bitgo 转入 Fidelity FSOL ETF,价值约 2716 万美元
- 福布斯:马斯克净资产突破6700亿美元
- 贝莱德增聘七位数字资产高管,加速拓展全球加密战略
- SEC 加密货币工作关于金融监控和隐私的圆桌会议已开始
- 数据:4563.25 万枚 MOVE 从 Movement Network 转出,价值约 1752 万美元
- 美联储威廉姆斯:已回到充足准备金水平
- 威廉姆斯:市场估值偏高,但定价合理
- The Information:OpenAI聘请谷歌高管负责并购事务,任命Albert Lee担任企业发展负责人
- Circle 宣布收购 Axelar 初始开发团队 Interop Labs 及其知识产权,加速跨链互操作性布局
- Bitfinex Alpha 报告:2026 将是流动性之年,加密 ETP 资管规模或超 4000 亿美元
- 数据:530.94 枚 BTC 从 Wintermute 转出,价值约 4.61 亿美元
- 数据:共计 11.45 万枚 SOL 转入 Coinbase,价值约 1.45 亿美元
- Anchorage Digital 收购加密货币平台 Securitize For Advisors
- 巨鲸“pension-usdt.eth”过去 7 天连胜 11 笔交易,总利润超 2500 万美元
- 数据:240.36 枚 BTC 从 Bybit 转出,经中转后流入 Anchorage Digital
- 美联储理事:重启国库券购买并非量化宽松,将继续将部分风险转移至私人市场
- 数据:今日加密货币市值前 100 代币涨跌
- 威廉姆斯:货币政策关注就业与通胀风险
- 威廉姆斯:美联储将积极使用常备回购便利工具管理流动性
- 美联储威廉姆斯:预计 2026 年 GDP 增速将达 2.25%
- 预测市场显示凯文·沃什当选美联储主席概率已超越凯文·哈塞特
- 数据:共计 1.29 万枚 ETH 从 Coinbase Prime 和 Wintermute 转出,价值约 3916 万美元
- ETH跌破3000 USDT
- Sky Protocol 上周斥资 190 万 USDS 回购 3410 万枚 SKY 代币
- 今日美国比特币 ETF 净流入 104 枚 BTC,以太坊 ETF 净流出 7225 枚 ETH,SOL ETF 净流入 30441 枚 SOL
- 标普 500 金融板块交易创历史新高,上涨 0.4%
- 美股加密股跌幅快速扩大,Gemini(GEMI)跌 13.69%,Circle(CRCL)跌 6.61%
- 尤文图斯粉丝币 JUV 一度跌超 13%,Tether 收购遭拒但仍是第二大股东
- 芝商所推出基于现货报价的 XRP 和 SOL 期货合约
- 麻吉大哥向 Hyperliquid 存入约 25 万枚 USDC 加仓 ETH 多单
- BitMine 成本均价 3,906 美元,现浮亏 30.19 亿美元
- 美联储理事米兰:美联储政策立场过于紧缩,潜在通胀接近目标
- 标普 500、纳斯达克和道琼斯指数均上涨,开盘表现强劲
- 美联储米兰:更快的降息步伐将接近中性利率
- 特斯拉股价逼近一年高位,最新上涨 4.1%
- XDOOR($XD)启动多链空投,覆盖超 100 万地址
- 美联储理事米兰:核心 PCE 通胀率可能低于 2.3%,处于美联储“噪音范围”内
比推 APP



