
深入理解以太坊二层方案 Arbitrum 技术架构
Arbitrum是Layer2 Rollup的一种方案。和Optimism类似,状态的终局性采用“挑战”(challenge)机制进行保证。Optimism的挑战方法是将某个交易完全在Layer1模拟执行,判断交易执行后的状态是否正确。这种方法需要在Layer1模拟EVM的执行环境,相对复杂。Arbitrum的挑战相对轻便一些,在Layer1执行某个操作(AVM),确定该操作执行是否正确。Arbitrum介绍文档中提到,整个挑战需要大概500字节的数据和9w左右的gas。为了这种轻便的挑战机制,Arbitrum实现了AVM虚拟机,并在AVM虚拟机中实现了EVM的执行。AVM虚拟机的优势在于底层结构方便状态证明。
Arbitrum的开发者文档详细介绍了Arbitrum架构和设计。对AVM以及L1/L2交互细节感兴趣的小伙伴可以耐心地查看"Inside Arbitrum"章节:
https://developer.offchainlabs.com/docs/developer_quickstart
整体框架
Arbitrum的开发者文档给出了各个模块关系:
Arbitrum的系统主要由三部分组成(图中的右部分,从下到上):EthBridge,AVM执行环境和ArbOS。EthBridge主要实现了inbox/outbox管理以及Rollup协议。EthBridge实现在Layer1。ArbOS在AVM虚拟机上执行EVM。简单的说,Arbitrum在Layer2实现了AVM虚拟机,在虚拟机上再模拟EVM执行环境。用AVM再模拟EVM的原因是AVM的状态更好表达,便于Layer1进行挑战。
EthBridge和AVM执行环境对应的源代码:
https://github.com/OffchainLabs/arbitrum.git
ArbOS对应的源代码:
https://github.com/OffchainLabs/arb-os.git
这个模块关系图太过笼统,再细分一下:
EthBridge主要实现了三部分功能:inbox,outbox以及Rollup协议。inbox中“存放”交易信息,这些交易信息会“同步”到ArbOS并执行。outbox中“存放”从L2到L1的交易,主要是withdrawl交易。Rollup协议主要是L2的状态保存以及挑战。特别注意的是,Arbitrum的所有的交易都是先提交到L1,再到ArbOS执行。ArbOS除了对外的一些接口外,主要实现了EVM模拟器。整个模拟器实现在AVM之上。整个EVM模拟器采用mini语言实现,Arbitrum实现了AVM上的mini语言编译器。简单的说,Arbitrum定义了新的硬件(machine)和指令集,并实现了一种上层语言mini。通过mini语言,Arbitrum实现了EVM模拟器,可以执行相应交易。
AVM State
因为所有的交易都是在AVM执行,交易的执行状态可以用AVM状态表示。AVM相关实现的代码在arbitrum/packages/arb-avm-cpp中。
AVM的状态由PC,Stack,Register等状态组成。AVM的状态是这些状态的hash值拼接后的hash结果。
AVM使用c++实现,AVM表示的逻辑实现在MachineStateKeys类的machineHash函数(machinestate.cpp)中。AVM的特别之处就是除了执行外,还能较方便的表达(证明)执行状态。深入理解AVM的基本数据结构,AVM的基本的数据类型包括:
using value =
std::variant<Tuple, uint256_t, CodePointStub, HashPreImage, Buffer>;
enum ValueTypes { NUM, CODEPT, HASH_PRE_IMAGE, TUPLE, BUFFER = 12, CODE_POINT_STUB = 13 };
uint256_t – 整数类型
CodePoint – 当前代码指令表示
Tuple – 元组,由8个Value组成。元组中的某个元素依然可以是元组
Buffer – 数组,最长为2^64
HashPreImage – 固定的hash类型,hashValue = hash(value, prevHashValue)
每种数据类型除了数据表示外,还能非常方便地计算其hash值作为状态。详细看看CodePoint和Tuple基本数据类型。
CodePoint
CodePoint类型将多个操作“捆绑”在一起,每个CodePoint除了记录当前的Operation外,还包括前一个CodePoint的hash信息。这样所有的Operation可以串连起来,当前的CodePoint除了能表达当前的Operation外,还能明确Operation的依赖关系。CodePoint的类型定义在:packages/arb-avm-cpp/avm_values/include/avm_values/codepoint.hpp。
struct CodePoint {
Operation op;
uint256_t nextHash;
CodePoint(Operation op_, uint256_t nextHash_)
: op(op_), nextHash(nextHash_) {}
bool isError() const {
return nextHash == 0 && op == Operation{static_cast<OpCode>(0)};
}
};
Tuple
Tuple类型由RawTuple实现。RawTuple是由一组value组成。Tuple限制最多8个value。
struct RawTuple {
HashPreImage cachedPreImage;
std::vector<value> data;
bool deferredHashing = true;
RawTuple() : cachedPreImage({}, 0), deferredHashing(true) {}
};
Tuple的类型定义在:packages/arb-avm-cpp/avm_values/include/avm_values/tuple.hpp。
在理解了基础类型的基础上,DataStack可以由一系列Tuple实现:
总结一下,AVM中的PC,Stack,Register等等的状态都能通过hash结果表示。AVM整个状态由这些hash值的拼接数据的hash表示。
Rollup Challenge
在提交到L1的状态有分歧时,挑战双方(Asserter和Challenger)先将状态分割,找出“分歧点”。明确分歧点后,挑战双方都可提供执行环境,L1执行相关操作确定之前提交的状态是否正确。L1的挑战处理逻辑实现在arb-bridge-eth/contracts/challenge/Challenge.sol。整个挑战机制有超时机制保证,为了突出核心流程,简化流程如下图所示:
挑战者通过initializeChallenge函数发起挑战。接下来挑战者(Challenger)和应战者(Asserter)通过bisectExecution确定不可再分割的“分歧点”。在确定分歧点后,挑战者通过oneStepProveExecution函数确定Assert之前提交的状态是否正确。
initializeChallenge
function initializeChallenge(
IOneStepProof[] calldata _executors,
address _resultReceiver,
bytes32 _executionHash,
uint256 _maxMessageCount,
address _asserter,
address _challenger,
uint256 _asserterTimeLeft,
uint256 _challengerTimeLeft,
IBridge _bridge
) external override {
…
asserter = _asserter;
challenger = _challenger;
…
turn = Turn.Challenger;
challengeState = _executionHash;
…
}
initializeChallenge确定挑战者和应战者,并确定需要挑战的状态(存储在challengeState)。challengeState是由一个和多个bisectionChunk状态hash组成的merkle树树根:
整个执行过程可以分割成多个小过程,每个小过程(bisection)由起始和结束的gas和状态来表示。
turn用来记录交互顺序。turn = Turn.Challenger表明在初始化挑战后,首先由Challenger发起分歧点分割。
bisectExecution
bisectExecution挑选之前分割片段,并如可能将片段进行再次分割:
bisectExecution的函数定义如下:
function bisectExecution(
bytes32[] calldata _merkleNodes,
uint256 _merkleRoute,
uint256 _challengedSegmentStart,
uint256 _challengedSegmentLength,
bytes32 _oldEndHash,
uint256 _gasUsedBefore,
bytes32 _assertionRest,
bytes32[] calldata _chainHashes
) external onlyOnTurn {
_chainHashes是再次分割点的状态。如果需要再次分割,需要满足分割点的个数规定:
uint256 private constant EXECUTION_BISECTION_DEGREE = 400;
require(
_chainHashes.length ==
bisectionDegree(_challengedSegmentLength, EXECUTION_BISECTION_DEGREE) + 1,
"CUT_COUNT"
);
简单的说,每次分割,必须分割成400份。
_oldEndHash是用来验证状态这次分割的分割片段是上一次分割中的某个。需要检查分割的有效性:
require(_chainHashes[_chainHashes.length - 1] != _oldEndHash, "SAME_END");
require(
_chainHashes[0] == ChallengeLib.assertionHash(_gasUsedBefore, _assertionRest),
"segment pre-fields"
);
require(_chainHashes[0] != UNREACHABLE_ASSERTION, "UNREACHABLE_START");
require(
_gasUsedBefore < _challengedSegmentStart.add(_challengedSegmentLength),
"invalid segment length"
);
起始状态正确。这次分割不能超出上次分割范围,并且最后一个状态和上一个分割的结束状态不一样。
bytes32 bisectionHash =
ChallengeLib.bisectionChunkHash(
_challengedSegmentStart,
_challengedSegmentLength,
_chainHashes[0],
_oldEndHash
);
verifySegmentProof(bisectionHash, _merkleNodes, _merkleRoute);
通过merkle树的路径检查确定起始状态和结束状态是上一次某个分割。
updateBisectionRoot(_chainHashes, _challengedSegmentStart, _challengedSegmentLength);
更新细分分割对应的challengeState。
oneStepProveExecution
当不能分割后,挑战者提供初始状态(证明),并由L1进行相应的计算。计算的结果应该和提供的_oldEndHash不一致。不一致说明挑战者成功证明了之前的计算结果不对。
(uint64 gasUsed, uint256 totalMessagesRead, bytes32[4] memory proofFields) =
executors[prover].executeStep(
bridge,
_initialMessagesRead,
[_initialSendAcc, _initialLogAcc],
_executionProof,
_bufferProof
);
通过executeStep计算出正确的结束状态。executeStep实现在packages/arb-bridge-eth/contracts/arch/OneStepProofCommon.sol中。核心是executeOp函数,针对当前的context读取op,执行并更新状态。感兴趣的小伙伴可以自行查看。
rootHash = ChallengeLib.bisectionChunkHash(
_challengedSegmentStart,
_challengedSegmentLength,
oneStepProofExecutionBefore(
_initialMessagesRead,
_initialSendAcc,
_initialLogAcc,
_initialState,
proofFields
),
_oldEndHash
);
}
verifySegmentProof(rootHash, _merkleNodes, _merkleRoute);
确定初始状态和结束状态是上一次挑战状态中的某个分割。初始状态由提供的证明(proof)计算获得。
require(
_oldEndHash !=
oneStepProofExecutionAfter(
_initialSendAcc,
_initialLogAcc,
_initialState,
gasUsed,
totalMessagesRead,
proofFields
),
"WRONG_END"
);
确认_oldEndHash和计算获得结束状态不一样。不一样才说明之前提交的结束状态是错误的。
_currentWin();
计算完成后,确定胜利方。
总结:
Arbitrum是Layer2 Rollup的一种方案。采用挑战机制确定Rollup状态的终局性。为了引入轻便挑战机制,Arbitrum定义了AVM,一种可以方便证明执行状态的虚拟机,并设计了mini语言和编译器。在AVM上模拟了EVM的执行环境,兼容EVM。挑战时将执行过程进行400分分割,由L1执行少量指令确定状态是否正确。
比推快讯
更多 >>- “内幕巨鲸”被多次清算后的目前残余仓位降至 4734 万美元
- 分析:BTC 内存池中交易数量与去年底相比明显减少,或有潜在危机
- 美国财长贝森特:马斯克应该专注于商业
- 分析师:WLFI 测试添加流动性为不实消息
- 比特币回升触及 10.9 万美元
- 美财长贝森特:若 8 月 1 日前未达成协议,关税将恢复至 4 月份水平
- 美国财长贝森特:将由美联储决定是否降息
- 人工智能交易市场 olaxbt 完成 338 万美元种子轮融资,Amber Group 领投
- 消息人士:美国和印度小型贸易协议谈判已经完成,平均关税税率或为 10%
- 美国财政部长:100 个较小的国家将获得固定的关税税率
- 疑似 Abraxas Capital 标记地址向 Kraken 转入 1000 枚 BTC
- 美国财政部长:贸易谈判进入最后阶段
- 某巨鲸循环做多 ETH,过去 2 小时建仓 2304.3 枚 stETH
- 马斯克已向美国联邦选举委员会提交美国党组织声明
- 马斯克发文询问“美国党”首次代表大会应在何时何地举行
- Boom 基金会:已完成 BOOM 代币空投资格快照
- 港媒:Circle 上市一个月录得逾 5 倍涨幅,光大控股于 2016 年成为其股东
- Michael Saylor 再次发布比特币 Tracker 信息,下周或将披露增持数据
- 中信建投:美股代币化大爆发,券商 IT 改造需求有望加速释放
- LetsbonkFun 以 45.7% 市场份额登顶,24 小时交易量达 4.02 亿美元
- 人大金融科技研究所:促进可控稳定币与数字人民币互通互认
- 劳埃德银行:下周美联储会议纪要或不会改变 7 月不降息市场预期
- Cartwright 建议英国首个 DB 养老基金将 3%资金投入配置 BTC
- 疑似 Arthapala 地址过去 5 小时再次向各大交易所充值 5850 枚 ETH
- Vitalik Buterin 联合发起 EIP-7983 提案,拟增强网络抗 DoS 攻击能力
- 美国党构想曝光:马斯克称打破两党垄断并不难
- 陈茂波:香港上市 ETP 锚定资产包括数字资产,也有追踪 Coinbase 等美股产品
- 近期沪深两市多家上市公司频繁被询问是否布局稳定币业务
- Endless Clouds 基金会:END 转账功能拟于 24 小时内生效
- 比特币于 65 分钟前在高度 904263 处挖出空区块
- 分析:马斯克成立“美国党”或需数年时间来解决法律和经济层面的困难
- 本周美国以太坊现货 ETF 净流入 2.191 亿美元
- 观点:马斯克虽有巨额财富和影响力,但历史上美国第三党很难成功
- 转移逾 8 万枚 BTC 的远古巨鲸疑似升级旧钱包,暂无抛售迹象
- 前 DigitalMint 勒索软件谈判专家被指控与黑客合谋敲诈受害者,遭美国司法部调查
- Toncoin 与阿联酋合作,向 TON 质押者提供 10 年黄金签证
- Polymarket 上预测WLFI 代币上线首日后 FDV 超过 130 亿美元概率达 56%
- Bankless 联创:以太坊 MEV 最小化投资或助力传统金融采纳
- Hash Epoch 平台代币 HEST 将于 7 月 9 日全网上线交易
- Matrixport 近 1 小时从 Binance 提取 1500 万 USDT
- 印度捣毁“最多产的暗网毒品集团”,嫌疑人使用门罗币洗钱
- 观点:因加密禁令没收中国用户 FTX 索赔资金缺乏法律依据,FTX 债权以美元计价并结算
- ZachXBT:不承接 Sui 生态相关案件,在该生态系统未得到支持
- 沉寂两年的鲸鱼向 Kraken 转入 230 枚 ETH,价值约 57.9 万美元
- 某巨鲸清仓 21.6 万枚 HYPE,亏损 29 万美元
- Miller Value Partners 首席投资官 Bill Miller IV 质疑比特币征税合理性
- Binance Alpha 昨日交易量报 4.586 亿美元,BR、KOGE、CARV 分列前三
- 马斯克暗示美国党将参与明年中期选举
- RootData:BB 将于一周后解锁价值约 385 万美元的代币
- 某鲸鱼半小时前从 Binance 提取 3000 枚 ETH,其 6 月 10 日以来累计建仓 7001 枚 ETH